Why Is The Plant Growth Lamp A High-tech In LED?

- Apr 01, 2019-

Why is the plant growth lamp a high-tech in LED?

The indicators of plant growth lamps can be said to be the most replicated in the LED industry. Various plants survive in a unique geographical environment, including sunlight, temperature, altitude and soil. They have formed a unique flowering and breeding response strategy in the evolution of the natural environment of hundreds of millions of years, which is to limit the flowering season to a suitable The period to ensure that the offspring can grow and develop smoothly, this is the photoperiod phenomenon of plants. Most plants gradually adapt to the rhythm of the natural light environment during the natural selection and evolution process, forming a distinct seasonality of optimal reproduction. Studies have shown that photoperiod is an important environmental factor for inducing plant flowering, summarizing and analyzing the regularity of plant breeding performance, in order to improve the output efficiency of facility agriculture and promote the healthy development of agricultural planting industry.

The photoperiod is an important inducer of plant flowering. This paper summarizes the specific application of photoperiod in plant flowering by analyzing the photoperiodic physiological pathway of plant flowering, and points out that other environmental factors should be considered in the application, which provides a useful idea for the efficient development of plant agriculture flower planting industry. It also provides a scientific basis for LED manufacturers to produce plant growth lamps and control design.

Plant flowering photoperiod physiological pathway

Plant leaves sense photoperiod signals that conduct this flowering stimuli to the growth point of the stem tip. Photosensitive pigments and cryptochromes participate in this pathway as photoreceptors, and the flowering organs are controlled by gene expression to complete flowering control. Higher plants have at least three types of photoreceptors: sensitizing pigments that sense red and far red light, cryptochromes and phototaxis that absorb ultraviolet (UV-A) and blue light.

Plant photoperiod response type

The transition from simple vegetative growth to nutrient and reproductive growth is a major turning point in plant life, and its importance is the continuation of the plant species itself. In 1920, W. W. Garner and H. A. Allard proposed the concept that the plant itself can measure the length of sunshine and can sense the season according to it, which is now called the photoperiod phenomenon.

In a certain developmental period, plants can be divided into long-day plants (abbreviated as LDP), short-day plants (short-day plants, abbreviated as SDP), and Japanese-negative plants according to the type of response to the length of sunshine. Day-neutralplant, abbreviated as DNP). LDP is a plant that must be lighted longer than a certain number of hours per day and can bloom after a certain number of days. Such as winter wheat, barley, rapeseed, fairy, sweet-scented osmanthus and sugar beet, etc., and the longer the illumination time, the earlier the flowering. SDP is a plant that must bloom for less than a certain number of hours per day. If the light is properly shortened, it can be flowered in advance, but if the light is extended, it will delay flowering or flowering. Such as rice, cotton, soybeans, tobacco, begonia, chrysanthemum, morning glory and Xanthium. DNP refers to plants that can bloom under any sunshine conditions, such as tomatoes, cucumbers, rose and Clivia.

Key issues in the application of plant flowering photoperiod regulation

1 plant critical length

The critical day length of a plant refers to the longest sunshine that can be tolerated by short-day plant flowering during the day and night cycle or the shortest sunshine necessary to induce flowering of long-day plants. For LDP, the daily length is greater than the critical day length, and even 24 hours can be flowered. But for SDP, the length of the day must be less than the critical length to bloom, but too short to bloom. The Institute of Semiconductors of the Chinese Academy of Sciences and Baoding Dazheng Company should fully consider the chrysanthemum as the SDP factor in the edible chrysanthemum supplement project of Beijing Huitian Agricultural Cooperative.